Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Anal Biochem ; 631: 114360, 2021 10 15.
Article in English | MEDLINE | ID: covidwho-1474246

ABSTRACT

To monitor the levels of protecting antibodies raised in the population in response to infection and/or to immunization with SARS-CoV-2, we need a technique that allows high throughput and low-cost quantitative analysis of human IgG antibodies reactive against viral antigens. Here we describe an ultra-fast, high throughput and inexpensive assay to detect SARS-CoV-2 seroconversion in humans. The assay is based on Ni2+ magnetic particles coated with His tagged SARS-CoV-2 antigens. A simple and inexpensive 96 well plate magnetic extraction/homogenization process is described which allows the simultaneous analysis of 96 samples and delivers results in 7 min with high accuracy.


Subject(s)
Antibodies, Viral/blood , COVID-19 Serological Testing/methods , COVID-19/diagnosis , Immunoglobulin G/blood , SARS-CoV-2/isolation & purification , Antibodies, Viral/immunology , Antigens, Viral/blood , Antigens, Viral/immunology , COVID-19/blood , COVID-19/immunology , COVID-19 Serological Testing/economics , Enzyme-Linked Immunosorbent Assay/economics , Enzyme-Linked Immunosorbent Assay/methods , Humans , Immunoglobulin G/immunology , Magnets/chemistry , Nickel/chemistry , SARS-CoV-2/immunology , Sensitivity and Specificity , Seroconversion , Time Factors
2.
Sci Rep ; 11(1): 12330, 2021 06 10.
Article in English | MEDLINE | ID: covidwho-1265968

ABSTRACT

SARS-CoV-2 emerged in late 2019 and has since spread around the world, causing a pandemic of the respiratory disease COVID-19. Detecting antibodies against the virus is an essential tool for tracking infections and developing vaccines. Such tests, primarily utilizing the enzyme-linked immunosorbent assay (ELISA) principle, can be either qualitative (reporting positive/negative results) or quantitative (reporting a value representing the quantity of specific antibodies). Quantitation is vital for determining stability or decline of antibody titers in convalescence, efficacy of different vaccination regimens, and detection of asymptomatic infections. Quantitation typically requires two-step ELISA testing, in which samples are first screened in a qualitative assay and positive samples are subsequently analyzed as a dilution series. To overcome the throughput limitations of this approach, we developed a simpler and faster system that is highly automatable and achieves quantitation in a single-dilution screening format with sensitivity and specificity comparable to those of ELISA.


Subject(s)
Antibodies, Viral/blood , COVID-19/blood , SARS-CoV-2/isolation & purification , Animals , Antibodies, Viral/immunology , COVID-19/diagnosis , COVID-19/immunology , COVID-19 Serological Testing/economics , COVID-19 Serological Testing/methods , Enzyme-Linked Immunosorbent Assay/economics , Enzyme-Linked Immunosorbent Assay/methods , Humans , Immunoglobulin G/blood , Immunoglobulin G/immunology , Immunoglobulin M/blood , Immunoglobulin M/immunology , Mice , SARS-CoV-2/immunology
3.
Am J Trop Med Hyg ; 104(4): 1513-1515, 2021 Feb 25.
Article in English | MEDLINE | ID: covidwho-1102598

ABSTRACT

Laboratory diagnosis of the COVID-19 relies on RT-PCR to amplify specific fragments of SARS-CoV-2 genome. However, serological tests are required to determine the immune response elicited after infection. Here, we analyzed convalescent sera collected from positive individuals by RT-PCR to SARS-CoV-2 (n = 78), Zika (n = 20), dengue (n = 20), chikungunya (n = 54), intestinal parasites (n = 11), and HIV (n = 1), from different areas of Ecuador, with an in-house ELISA using a SARS-CoV-2 receptor binding domain recombinant (rRBD) antigen to detect IgG antibodies elicited by SARS-CoV-2 infection. Of the 78 samples positive for SARS-CoV-2 by RT-PCR, 73 showed high absorbance value compared with the cutoff and five were negative. All tested sera from other infections showed no reactivity. Sensitivity, specificity, positive predictive value, and negative predictive value were 93.6%, 100%, 100%, and 95.4%, respectively. This in-house anti-IgG rRBD ELISA offers an economic and simple alternative to determine IgG immune responses after SARS-CoV-2 infection.


Subject(s)
COVID-19 Serological Testing/methods , COVID-19/diagnosis , Enzyme-Linked Immunosorbent Assay/methods , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Antibodies, Viral/blood , COVID-19/epidemiology , COVID-19 Serological Testing/economics , Ecuador/epidemiology , Enzyme-Linked Immunosorbent Assay/economics , Humans , Immunoglobulin G/blood , Protein Binding , Protein Domains , Recombinant Proteins/immunology , Spike Glycoprotein, Coronavirus/chemistry
4.
Int J Infect Dis ; 101: 382-390, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-843546

ABSTRACT

Timely and accurate laboratory testing is essential for managing the global COVID-19 pandemic. Reverse transcription polymerase chain reaction remains the gold-standard for SARS-CoV-2 diagnosis, but several practical issues limit the test's use. Immunoassays have been indicated as an alternative for individual and mass testing. OBJECTIVES: To access the performance of 12 serological tests for COVID-19 diagnosis. METHODS: We conducted a blind evaluation of six lateral-flow immunoassays (LFIAs) and six enzyme-linked immunosorbent assays (ELISAs) commercially available in Brazil for detecting anti-SARS-CoV-2 antibodies. RESULTS: Considering patients with seven or more days of symptoms, the sensitivity ranged from 59.5% to 83.1% for LFIAs and from 50.7% to 92.6% for ELISAs. For both methods, the sensitivity increased with clinical severity and days of symptoms. The agreement among LFIAs performed with digital blood and serum was moderate. Specificity was, in general, higher for LFIAs than for ELISAs. Infectious diseases prevalent in the tropics, such as HIV, leishmaniasis, arboviruses, and malaria, represent conditions with the potential to cause false-positive results with these tests, which significantly compromises their specificity. CONCLUSION: The performance of immunoassays was only moderate, affected by the duration and clinical severity of the disease. Absence of discriminatory power between IgM/IgA and IgG has also been demonstrated, which prevents the use of acute-phase antibodies for decisions on social isolation.


Subject(s)
COVID-19/diagnosis , Enzyme-Linked Immunosorbent Assay/methods , Immunoassay/methods , Adult , Aged , Aged, 80 and over , Antibodies, Viral/blood , Brazil , COVID-19/blood , COVID-19/virology , Coronavirus Infections/epidemiology , Enzyme-Linked Immunosorbent Assay/economics , Female , Humans , Immunoassay/economics , Male , Middle Aged , Pandemics , SARS-CoV-2/genetics , SARS-CoV-2/immunology , SARS-CoV-2/isolation & purification , Sensitivity and Specificity , Young Adult
5.
Biosens Bioelectron ; 169: 112572, 2020 Dec 01.
Article in English | MEDLINE | ID: covidwho-741059

ABSTRACT

Convalescent serum with a high abundance of neutralization IgG is a promising therapeutic agent for rescuing COVID-19 patients in the critical stage. Knowing the concentration of SARS-CoV-2 S1-specific IgG is crucial in selecting appropriate convalescent serum donors. Here, we present a portable microfluidic ELISA technology for rapid (15 min), quantitative, and sensitive detection of anti-SARS-CoV-2 S1 IgG in human serum with only 8 µL sample volume. We first identified a humanized monoclonal IgG that has a high binding affinity and a relatively high specificity towards SARS-CoV-2 S1 protein, which can subsequently serve as the calibration standard of anti-SARS-CoV-2 S1 IgG in serological analyses. We then measured the abundance of anti-SARS-CoV-2 S1 IgG in 16 convalescent COVID-19 patients. Due to the availability of the calibration standard and the large dynamic range of our assay, we were able to identify "qualified donors" for convalescent serum therapy with only one fixed dilution factor (200 ×). Finally, we demonstrated that our technology can sensitively detect SARS-CoV-2 antigens (S1 and N proteins) with pg/mL level sensitivities in 40 min. Overall, our technology can greatly facilitate rapid, sensitive, and quantitative analysis of COVID-19 related markers for therapeutic, diagnostic, epidemiologic, and prognostic purposes.


Subject(s)
Antibodies, Viral/blood , Betacoronavirus/immunology , Coronavirus Infections/virology , Enzyme-Linked Immunosorbent Assay/instrumentation , Immunoglobulin G/blood , Microfluidic Analytical Techniques/instrumentation , Pneumonia, Viral/virology , Adolescent , Adult , Antibodies, Viral/immunology , Antigens, Viral/blood , Antigens, Viral/immunology , Biosensing Techniques/economics , Biosensing Techniques/instrumentation , COVID-19 , Coronavirus Infections/therapy , Enzyme-Linked Immunosorbent Assay/economics , Equipment Design , Humans , Immunization, Passive , Immunoglobulin G/immunology , Limit of Detection , Luminescent Measurements/economics , Luminescent Measurements/instrumentation , Microfluidic Analytical Techniques/economics , Middle Aged , Pandemics , Pneumonia, Viral/therapy , SARS-CoV-2 , Time Factors , Young Adult , COVID-19 Serotherapy
SELECTION OF CITATIONS
SEARCH DETAIL